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Good Analytical Chemists
Are Good Chemists First

It is always exciting for analytical chemists, whether in aca-
deme or industry, to see the emergence of a new measure-
ment science principle or device. One sees the frontier of ana-
lvtical chemistry palpably moving. With the emergence, there
is a period in which researchers probe and explore the basics
of the new measurcment, to find whether it can flexibly ex-
]_:l..'u'td o a I}|111i|3.' of measurements and its :,:xl_'u.:r'irm,:l'n'[nl eccen-
tricities.

Following the discovery phase, researchers ask, well, whart
kind of information can we actually Zain from this new mea-
surement? This second phase of measurement science re-
search, and the role of analytical chemists in chemistry and
their recognition within chemistry at large, deserves our at-
tention. Attention to the chemical context within which the
measurement may be applied is of crucial importance within
the post-discovery phase, History tells us (me) that develop-
ment of a measurement principle, without demonstration that
significant chemical information can be evoked with it, can
L'H'.il'lb._{ 1‘:,:1:1}51:1'rim1 Loy :|1|..'L|].'t1'¢.,'|l chemists within the ;jl'ullj.'til:..ll
community but much less so to those outside it Recognition
by the broader population of chemists comes, [ think, mainly
tor those who contribute to the }'Jrl::du:.‘l.‘iuu of new chemical
insights, reactions, materials, and processes.

Why shouldn®™ analyrical chemists participate in the appli-
canons of the toals they develop? Measurement science and
the production of new chemical knowledge should blend
scamlessly, and 1 believe analytical chemists should strive to
contribute to both—and not solely, single-mindedly, to the
former. To do this, the analytical chemist must glean percep-
tions of where development of a chemical area or process is
L‘u,'ing limited 1,:!].' a lack of information, as a stage on which to
pertorm and demonstrate the new measurement approach.

Whether in industry or academe, analytical chemists make a
real impact on other chemists when they do this. And from
this I draw my oft-repeated admonition that good analyrical
chemists must first be good chemists,

Analytical chemists of various backgrounds can, T hope,
see many examples of how this principle has worked and still
works, (,'.m:n.:lrlp::-r:n‘j' :,:x:ar'up]cs in which ;,1r'|:||1_,'rir.';|] chemists
are contributing effectively to new chemical knowledge in-
clude the applications of clectrospray ionization and MALDI
18] l':iupuh'n'n:r characterization, microelectrodes and laser-in-
duced tluorescence to observations of individual chemical re-
action events and individual maolecules, multvariate sranstics
with near- IR spectrophotometry for complex mixture analysis,
biocompatibility studics with ion-selective electrodes tor in
vivo analysis, Raman spectroscopy to catalyst and carbon sur-
face chemistry, HPLC in pharmacokinetic investgations,
ICPMS in environmental studies, and self-assembled chemi-
cally modified elecrrodes in electron-rransfer dyvnamics.

That the ]_'J:I'l.:{:t,:dil'lb._’, list is |n|:'|§.; yet stll i1:|1.:m'|'||;r|un,' % a
good sign for analytical chemists’ substantive contributions
to the larger world of chemistry. It can only be maintained,
however, by the continuing |i’r'r:|n:11|1._r| recognition by analytical
chemists of the significance of reading broadly about chemical
phenomena and by professors of the importance of having
their graduate students sample courses outside analytical
chemistry—especially those dealing with chemical reactions

and propertics.
T e WLy

This editorial ;ﬂ?’éﬁi:mﬂ!’j' ::Pprr:rrn' in the December 1, Joas,
wwre of Analytical Chemstry.
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HPLC compared to UPLC
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Table 1. Characteristics and performances of commonly used types of mass spectrometers. Check
marks indicate available, check marks in parentheses indicate optional. +, ++, and +++ indicate
possible or moderate, good or high, and excellent or very high, respectively. Seq., sequential.

IT-LIT Q-Q-ToF  ToF-ToF FT-ICR Q-Q-Q QQ-LIT

Mass accuracy
Resolving power
Sensitivity (LOD)
Dynamic range

ESI

MALDI

MS/MS capabilities
Additional capabilities
Identification
Quantification
Throughput

Detection of modifications

Low Good Good Excellent Medium Medium
Low Good High Very high Low Low
Good High Medium High High
Low Medium  Medium  Medium High High
" W W’ ” W
(v*) () W
W W W W’ W W
Seq. MS/MS Precursor, Neutral loss, MRM
++ ++ ++ +++ + +
+ 4+ ++ ++ +4+ +++
4 ++ +++ ++ ++ ++
+ - + + e

14 APRIL 2006 VOL 312 SCIENCE www.sciencemag.org
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and their changes over time as a consequence of
stimuli
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MASS SPECTROMETRY-BASED METABOLOMICS

Katja Dettmer,’ Pavel A. Aronov,’ and Bruce D. Hammock'**
"D-:’pamnﬂu af Emtomalogy, University of California ar Davis, Davis,

California 936060

] N A . .
Cancer Research Cenrer, University of California af Davis, Davis,

California 93616

Received 18 Qulv 2005 received (revised ) OF June 2000; accepred 11 June 20606
Published onling 18 Apgust 2000 in Wiley InterScience (wawwiinferscience.wilev.com ) DEF T TO02dmas, 20008

This review presents an overview af the dynamically developing
Jteld of maxs spectrometry-based metabolomics, Metabolomics
aims ai the comprehensive and guantitative analvsis of wide
arrays of metabolites in biological samples. These numerous
analytes heve very diverse physico-chemical properties and
aceur af different abundance levels. Consequently. comprehen-
sive metabolomics mvestigations are primarily a challenge for
analviical chemizsiry and specifically mass spectromelry fias
vasi potential as a teol for this rvpe of investigation
Metabolomics reqguire special approaches for sample prepara-
tion, separation, and mass spectrometric analvsis. Current
examples of those approaches are deseribed in this review, It
primarily focuses on metabolic fingerprinting, o technique that
analvies all detectable analyvies in a given sample with
subsequent classification of samples and  fdentification of
differentially expressed metabolites, which define the sample
classes, To pedform this complex task, data analvsis tools,
metabolite lbraries, and daabases ave required. Therefore,
recent advances in metabolomics Bieinformarics ave also
discpysved. ) 2006 Wiley Periodicals, Inc., Mass Spec Rey
26:51-TE, 2007

Kevwords: metabolomics; metabolic fingerprinting, metabalic
profiling: lpidomics; mass spectrometry

central role in this new science (see Fig. 1). The integrative
analvsis of an organism’s response 0 g perturbation on the
transcriptome, proteome, and metabolome levels will lead o a
better understanding of the biochemical and biological mechan-
isms in complex systems, However, whereas genomics, tran-
scriptomics, and proteomics have made significant strides in
technology  development, the tools for the comprehensive
examination of the metabolome are still emerging (Bino et al.,
2004y, Although metabolomics is the endpoint of the “omics
cascade™ and 15 the closest o phenotvpe, there 15 no single-
instrument platform that currently can analyze all metabolites.
Possibly, because there is at least the perception that the other
“omic” approaches can be handled by a single platform,
metabolomics has lagged behind the other technologies. This is
illustrated in Figure 2, showing the mibliographic search
comtaining the words metabolomics, metabonomics, and proteo-
mics in Chemical Abstracts Plus (SciFinder Scholar). While in
1999 three articles containing the keywords metabolomics or
metabonomics were published. the number increased to 147
articles in 2003 and 203 in 2004, Moreover, the journal
Metabolomics {Springer) was recently launched, which is
dedicated to publish research results related to metabolomics
technology development, data analysis and storage, integrated

15
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Discovery metabolomics

Discovery metabolomics experiments involve examining an untargeted suite of metabolites, finding the ones with
statistically significant variations in abundance within a set of experimental versus control samples, and determining
their chemical structure. An interpretation step allows the researcher to connect the metabolite with the biological

process or condition.
Separation Feature finding Alignment and S !
°

MassHunter software

Analysis and visualization

LC/MS

— Agilent solutions for discovery metabolomics
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Targeted metabolomics

Targeted metabolomics experiments focus on validation, and use a large number of samples to accurately measure
the abundance of previously identified metabolites. It is highly quantitative and usually requires the use of

analytical standards.
MRM quantitation Statistical analysis Pathway analysis

Separation and detection
' MassHunter software MPP software

%ﬂ Compound identification Anllysu and vuumn Pathway visualization
"

Agilent solutions for targeted metabolomics research
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GC/MS OVERLAP LC/MS
Alkylsilyl derivatives Alcohols Organic acids
Eicosanoids Alkaloids Organic amines
Essential oils Amino acids Nucleosides
Esters Catecholamines lonic species
Perfumes Fatty acids Nucleotides
Terpenes Phenolics Polyamines
Waxes Polar organics
Volatiles Prostaglandins
Carotenoids Steroids
Flavonoids
Lipids

Less polar More polar

Chemical classes suitable for GC/MS versus LC/MS

Owing to the wide range of phsiochemical properties
and concentration there is no one method that can
separate, detect, and identify all known metabolites.
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A universal guenching and extraction
protocol for micobles does not yet exist.

Anal. Chem, 2007, 79, 38433849

Intracellular or extracellular metabolites?

Sampling for Metabolome Analysis of

Microorganisms

Christoph J. Bolten,! Patrick Kiefer,}' Fabien Letisse,?*® Jean-Charles Portais,?% and

Christoph Wittmann*-t

Biochemical Engineering, Saarland Universily, Saarbriicken, Germany, Laboraloire Biolechnologle-Bloprocédés, UMR-CNRS
5504, UMR INRA 782, Toulouse, France, and Université Pauwl Sabatier, Toulouse, France

In the present work we investigated the most commonly
applied methods used for sampling of microorganisms in
the field of metabolomics in order to unravel potential
sources of error previously ignored but of utmost impor-
tance for accurate metabolome analvsis. To broaden the
significance of our study, we investigated different Gram-
negative and Gram-positive bacteria, i.e., Bacillus sub-
tilis, Coryvnebacterium glutamicum, Escherichia coli,
Gluconobacter oxydans, Pseudomonas putida, and
Zymononas mobilis, and analvzed metabolites from
different catabolic and anabolic intracellular pathwavs.

tion of development. They have borne new analytical techniques
for the various metabolites, as well as new data-mining and
modeling tools to handle and interpret the large metabolome data
sets. With the use of these novel tools metabolome analvsis has
been applied to different biological systems involving different
microorganisms, plants, or mammalian cells. Sampling is espe-
cially critical in metabolome analysis due to high exchange rates
and small pool sizes of the metabolites of interest.! Due to this,
quenching of the cells during sampling iz u=unally applied. The
most popular method for microbial cells is quenching with cold
methanol, maintaining the sample temperature below —20 *C,

20
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Agilent ThermoFisher
7890A/5975C Trace GC/Delta VAdvantage
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(GC-MS) (GC-IRMS)
Agilent
1260/6460
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Microbial Metabolomics with Gas Chromatography/

Mass Spectrometry

Maud M. Koek,*t Bas Muilwijk,f Mari&t J. van der Werf,! and Thomas Hankemeiert

Analytical Science Depariment, TNO Qualtty of Life, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands, and
LACDR Analytical Biosciences, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands

An analytical method was set up suitable for the analysis
of microbial metabolomes, consisting of an oXimation and
silylation derivatization reaction and subsequent analysis
hy gas chromatography coupled to mass spectrometry.
Microbial matrixes contain many compounds that poten-
tially interfere with either the derivatization procedure or
analysis, such as high concentrations of salts, complex
media or buffer components, or extremely high substrate
and product concentrations. The developed method was
extensively validated using different microorganisms, i.e.,

compounds, MW < 1000) in the cell (the metabolome), body
fluids, or tissue.® As the biochemical level of the metabolome is
closest to that of the function of a cell (the phenotype), the study
of the metabolome is key in understanding biological functioning.!
By analyzing differences between metabolomes using biostatistics
(multivariate data analysis; pattern recognition), metabolites
relevant to a specific phenotypic characteristic can be idenfified.
By using such a nontargeted, holistic approach instead of the
traditional hypothesis<driven approach, metabolomics studies can
lead to new insights in cellular behavior.!?
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Standardizing GC-MS metabolomics™
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ABSTRACT

Keywords:

Quantitative systems biology
High-throughput “omic” techniques
Nata correction and normalizatinn

Metabolomics being the most recently introduced “omic" analytical platform is currently at its develop-
ment phase. For the metabolomics to be broadly deployed to biological and clinical research and practice,
issues regarding data validation and reproducibility need to be resolved. Gas chromatography-mass spec-
trometry (GC-MS) will remain integral part of the metabolomics laboratory. In this paper, the sources of
biases in GC-MS metabolomics are discussed and experimental evidence for their occurrence and impact
on the final results is provided. When available, methods to correct or account for these biases are pre-
sented towards the standardization of a systematic methodology for quantitative GC-MS metabolomics.

© 2008 Elsevier B.V. All rights reserved.
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Flowchart of GC-MS Metabolomic Analytical Platform

Stepl

Biological Sample
I
Extraction

v

Dried Metabolite Mixture
|

Step2

Derivatization

Stepd

Stepd

Steps

¥

Mixture of Metabolite Derivatives
1

Data Acquisition

v

Peak Area Profile of Metabolite Derivatives
|

Peak Identification & Quantification

v

List of Marker lon Peak Areas
of Metabolite Derivatives

I
Bioinformatics Analysis

{

Biologically-Relevant Conclusions

Fig. 1. Schematic diagram of the GC-MS metabolomics analytical platform.
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Data Analysis Tool for Comprehensive Two-Dimensional Gas
Chromatography/Time-of-Flight Mass Spectrometry

Sandra Castillo, Ismo Mattila, Jarkko Miettinen, Matej Oresic, and Tuulia Hyotylainen®

VTT Technical Research Centre of Finland, Espoo, FI-02044 VT'T, Finland

ABSTRACT: Data processing and identification of unknown
compounds in comprehensive two-dimensional gas chromatog-
raphy combined with time-of-flight mass spectrometry
(GCx GC/TOFMS) analysis is a major challenge, particularly
when large sample sets are analyzed. Herein, we present a method
for efficient treatment of large data sets produced by GCx GC/
TOFMS implemented asa freely available open source software
package, Guineu. To handle large data sets and to eficiently
utilize all the features available in the vendor software (baseline
correction, mass spectral deconvolution, peak picking, integra-
tion, library search, and signal-to-noise ﬁ]tering), data prepro-
cessed by instrument software are used as a starting point for
further processing. Our software affords alignment of the data,
normalization, data filtering, and utilization of retention indexes
in the verification of identification as well as a novel tool for

33



GC/MSHIA 2

o T EATAMN
= BP9
s ANEEATEN
= BRI F G THEY 550
= BRI F AR
o fTEALT= IR R CANKESE)




n/nature protocols

| PROTOCOL COIMS

13¢-based metabolic flux analysis

Nicola Zamboni!, Sarah-Maria Fendt'?, Martin Rith]"* & Uwe Sauer!

'Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland. “PhD Program Systems Biology of Complex Diseases, ETH Zurich, Zurich, Switzerland.
*PhD Program Molecular Life Sciences, ETH Zurich, Zurich, Switzerland. Correspondence should be addressed to U.S. (sauer@ethz.ch).

Published online 21 May 2009; doi:10.1038/nprot.2009.58

Stable isotope, and in particular 13C-based flux analysis, is the exclusive approach to experimentally quantify the integrated
responses of metabolic networks. Here we describe a protocol that is based on growing microbes on 13C-labeled glucose and
subsequent gas chromatography mass spectrometric detection of 13C-patters in protein-bound amino acids. Relying on publicly
available software packages, we then describe two complementary mathematical approaches to estimate either local ratios of
converging fluxes or absolute fluxes through different pathways. As amino acids in cell protein are abundant and stable, this protocol
requires a minimum of equipment and analytical expertise, Most other flux methods are variants of the principles presented here,

A true alternative is the analytically more demanding dynamic flux analysis that relies on **C-pattern in free intracellular
metabolites. The presented protocols take 5-10 d, have been used extensively in the past decade and are exemplified here for the
central metabolism of Escherichia coli.,
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Tandem mass spectrometry: A novel approach for metabolic flux analysis
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The goal of metabolic flux analysis [MFA) is the accurate estimation of intracellular fluxes in metabolic
networks. Here, we introduce a new method for MFA based on tandem mass spectrometry (MS) and
stable-isotope tracer experiments. We demonstrate that tandem MS provides more labeling information
than can be obtained from traditional full scan MS analysis and allows estimation of fluxes with better
precision. We present a modeling framework that takes full advantage of the additional labeling
information obtained from tandem MS for MFA. We show that tandem MS5 data can be computed for any
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Determination of metabolic flux changes during fed-batch
cultivation from measurements of intracellular
amino acids by LC-MS/MS
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Naoko Kageyama b Daigo Iwahata P Hiroshi Miyano b Kazuo Hirayama b
Yoshihiro Usuda®, Kazuyuki Shimizu®9, Kazuhiko Matsui *
U Svstems Riodogy Group, fnstitite of Lite Sciences, Ajinomoto Co., Ine., Koweasaki 270-8681, Japan
P Besic Analvtical Clhemisty Growp, fnsitute of Life Sciences, Ajinomora Co., e, Kawasaki 210-8681, Sapan

& Metbotome Unit, Institite for Advanced Biosciences, Kewe University, Tsrpoka 9970007, Japan
4 Deparsment of Bioscience and Bioinformatics, Kvisyn fnstinete of Technology, liznka 820-8502, Japan

Received 8 February 2006; received in revised form 16 August 2006; accepted 8 September 2006

Abstract

Metabolic fux analysis using B |abeled substrates is a well-developed method for investigating cellular behavior in steady-
state culture condition. To extend its application. in particular to typical industrial conditions, such as batch and fed-batch
cultivations, a novel method of "C metabolic flux analysis is proposed, An isotopomer balancing model was developed to
elucidate Aux distributions in the central metabolism and all amino acids synthetic pathways. & lysine-producing strain of
Escherichia coli was cultivared by fed-batch mode in a growth medium containing yeast extract. Mass distribution data was
derived from both intracellular free amino acids and proteinogenic aming acids measured by LO-MS/MS, and a correction
parameter for the protein tumover effect on the mass distributions of intracellular amino acids was introduced. Metabolic flux
distributions were determined in both exponential and stationary phases. Using this new approach, a culture phase-dependent
metabolic shift was detected in the fed-batch culiure. The approach presented here has great potential for investigating cellular
hehavior in industrial processes, independent of cultivation modes, metabolic phase and growth medium.

3 2006 Elsevier BV, All rights reserved.
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Demonstration of the ethylmalonyl-CoA pathway

by using *C metabolomics

Remi Peyrawd®, Patrick Kiefer®, Philipp Christen®, Stephane Massou®, Jean-Charles Portas® and Julia 4. Yorhalt®?
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ane knoven to play & ey roke. \We appked state-of-the-art metabo.
lomics and " metsbalomics sirstegies (o demonsbrate how
glyowylate i generated during methybotropher growth im the
ispritrate  hyass-regative methyiciraph Methplobscterium  pe-
porguiis SR High-resolulon mass spoctromatry shovwoed the
presere of Cok thioesters specific to the recenily proposed
atbrplialonyl-Cod, patliway. T operatesn af 1his pathvaay was
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for glyouylate generateon during growth om mathanal. The resuls
ala revealed that 3 molecules of glyoxylsts veere regeneraied in
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plicatiors for the physclogy of these methylotroghs and theer role
in nature, and it alis provides & commen grownd Ter C1 and 2
compownd assimilation in isodiraie lvese-negative bactesia,
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il i LD e s e

Becent studics, mcluding mutamt snalyses, gene predicions
eny e assiys, and metabaeling s in B o S0 1, Bave
lel pr thee ohsarvation Bt o compley sequence of Cod thiksnes
dirreatives w invokeid mplvosadale repemeralion. resulting in B
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The isotopic composition of MTBE steadily changed
from the source regions along the major contaminant
plume (—26.4%o to +40.0%0 (carbon); —73.1%e to +60.3%o
(hydrogen)) indicating substantial biodegradation.

[ll

Constant carbon isotopic signatures of TBA suggest the
absence of TBA degradation at the site.

1. New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher
Biodegradation Processes: Application to Groundwater Contamination by
MTBE. Environmental Science & Technology 39 (2005) 1018-1029.

2. An Indicator of Biodegradation at a Petroleum Hydrocarbon Contaminated
Field Site. Environmental Science & Technology 36 (2002) 2464-2470.
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= Conversion of consumed hexadecane to CH, and CO, was
verified in subsequent growth experiments with 13C-labelled
substrate.

= The 13C-content in CH, and CO, after 158 days of incubation
was 10.1 (+=0.8) and 1.85 (#+0.001) atom%, respectively. In a
control experiment using unlabelled hexadecane, the 3C-
content in CH, and CO, was 1.07 and 1.09 atom%,
respectively.

= However, in the case of our enrichment culture we could
exclude the possibility that aerobic bacteria initiated alkane
degradation by traces of oxygen that might diffuse slowly
through the stoppers.
Methane formation from long-chain alkanes by anaerobic

microorganisms. Nature 1999, 401, (6750), 266-269. 54
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ABSTRACT

3 based metabolic flux analysis ("*CMEA) is limited to smaller scale experiments due to very high
costs af labeled substrates, We measured C enrichment in proteinogenic amino acid hydrolyzates
using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS ) from a series of
parallel batch cultivations of Corvnebacterium glutamicumn utilizing mixtures of natural glucose and
[1-2C) glucose, containing 0%, 0.5%, 1%, 2% and 10% [1-"C] glucose. Decreasing the [1-"3C] glucose
content, kinetic isotope effects played an increasing role but could be corrected From the corrected 2C
enrichments in vive Mueoes in the central metabolism were determined by numerical optimization. The
obtained Mux distribution was very similar to those obtained from parallel labeling experiments using
conventional high labeling GC-MS method and to published results. The GC-C-IRMS-based method
involving low labeling degree of expensive tracer substrate, eg. 1%, is well suited for larger laboratory
and industrial pilot scale fermentations,

@ 2010 Elsevier Inc. All rights rese rved.
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Isotopic Confirmation of Occurrence of Microbial
Denitrification Based on N2 and N2O Production Monitored
by Gas Chromatography/Isotope Ratio Mass Spectrometry
and Gas Chromatography/Mass Spectrometry

Al Guo-Min*, ZHENG Hai-Yan, ZHANG Min, LIU Zhi-Pei
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Acadermy of Sciences, Beijing 100101, China

Abstract: In thiz study. a new "N-labeled procedure based on isotopic ratio menitoring of Nz by zas chromatography/iselink/
1sotope ratio mass spectrometny with great precisien and of 5.0 by zas clwomatographyvimass spectromefry m SIMM mode with high
sensifivity was developed and proposad for the identification and confirmation of i vitre mrcrobizl demitrnfication. The mreture of
gazeous mefabolites produced by Alcaligenss faecalis and atmospheric gases in the confined cultivation tube was analyzed on a
GE-CarbonPlot column. A baseline separation of IN,/0., CO5, 1,0 and water vapour was obtained in a single mun, which elimmated
C0y and H2O interferance with 1sotopie analysiz of Iy and W20, In aH analysis of My, combustion oven'mterface in GC 1solink can
remove zll of the O in the sample gases, thereby providing accurate 8N measurement. The 6N value of N2 m ""N-labled sample,
"N-natural abundance control and “N-KNO, blank control were 2.394%. = 0.261%0, 0.022%0 = 0.044%: and 0.315%: = 0.045%,,
respactively. Besides, significant mereases In isotopic abundance of .0 and L0 (R = 2.99 min) relative to HIMLO were
observed, mdicating IN: and M:0 preduction from demtificaiton by A fascaliz. This procedurs provides 1sotopic evidence of IN:
andior M,0 production based on the marked increase in the "N isotope zbundance, and is rapid, sensitive and accurzte to indentify
and confirm the ocomrence of microbial denttrification. We have confirmed the demitifying activity of several strains of
microorganisms screened from the envirenment using this procedurs. Thizs procedurs has alse been applied to confirm the N

formation by nitrifier denifiification under defined conditions.
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File Mame: CAThermotlsodat NTWGlobal\User\ConFla Y Interface\GC [solink Device\Results)00722winlabled sample S ul-1030_-0010.dx:f

Intensity [m']

—— - [ [ M=o
. . — v |
A 1o X N, 11615, A xE
Icaligenes faecalis FoAnic i BN, #6815, HIMl
E000-
a7 .47 32602 42594 46565
— — —
50004 21381
4000
— _— l_{ _—
F000
2000
15 —
6 N V-Air-N2— 0013
1000+
o I'I :
T T T T T T
100 200 200 400 500 E00 Too 200
Time [5]
M2 M2+ || Channeld | Infos | Errors | Seguence Line
Feak | Start | Rt | wWidth | Sample | Ampl. | Ampl. | BED | BGD | Area | R R rd d Deltabelta | R d AT 1GHMAN
Hr. [=] [=] | [5] Dilution | 22 z9 28 29 All ZOMZ/ZEMZ | ZONZIZENZ | 2ON2/28H2 ZAMZ/ZEBNZ | ZONZ/Z8H2 | 1GHMGN [ 15HMAH | [%]
[%] [m%] | [mv] | [m%] | [mW] | W] [per mil] [per mil] [per mil] [per mil]
s, M2 s, Ai-MZ s, AiRMNZ
Lab.Tank
1 G7.1| 87| 23.4 (0.000 5307 | 3880 |24.2 | 252 [ 1024 00073472 | 07310842 | 0.002 -1.248 - 0.002673E| -1.2492 0.366016
208.0| 21| 245 | 0.000 4248 | 3652 (228 | 214 | 18.8E( 00073565 | 07320071 | 1.264 0.012 - 0.0026782( 0.013 0366477
3 365 3E| 232 | 0.000 5307 [ 3820 | 6.7 6.2 103.2| 00073420 | 07314526 | 0.104 -1.147 - 000326740 -1.447 0266053
F 405 42| 23.4 | 0.000 5306 (3879 | 6.7 6.4 103.2| 00073472 | 0.7310228 | 0.000 -1.250 - 0.003673E| -1.250 0.366016
4] 445 4€| 23.2 | 0.000 5309 (38581 |62 6.4 103.€| 00073470 | 07310674 | -0.021 -1.271 - 0.002673¢| -1.271 0.266008




File Name: CAThermotlsodat NTVGlobal\Useri\ConFlo Y Interface\GC [solink Device\Results)W100722abled sample 5 ul-1020_-0011 .d:=Ff
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[%] [m%] | [mv] | [m%] | [mw] | [Ws] [per mil] [per mil] [per mil] [per mil]
wE, M2 wE, Air-MZ wE, Ai-NZ
Lab.Tank

1 G7.1 (87| 234 | 0.000 5219 (3895 | 331 [ 245 | 102.6| 00073471 | 0.7306424 | -0.018 -1.268 0003673 -1.268 0.266009
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& 405 42| 23.4 | 0.000 5318 (3885 | 6.7 6.2 103.€( 00073472 | 0.7306555 | 0.000 -1.250 0003573 -1.250 0366016

il 445 4€| 23.2 | 0.000 5318 (3885 | 6.7 6.3 103.E( 00073470 | 07306319 | -0.032 -1.282 0.003673E| -1.282 0.366004
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5. R 1 & T IR 22 AT A AL

= To permit analysis of compounds with
Inadequate volatility or stability

= To improve chromatographic behavior or
detectability
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BY derivatizing the functional group (e.g., O-
H, COOH, N-H, and S-H) to promote the use
of chromatographic analysis.

These groups are difficult to analyze by GC
because they are not sufficiently volatile, show
excessive tailing, can be too strongly attracted
to the stationary phase or are thermally
unstable.
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For small and volatile compounds excessive
volatility may also pose problems during
analysis. Chemical derivatization increases the
molecular weight of very volatile compounds
which can minimize losses in sample handling
and help separate the gas chromatographic
sample peak(s) from the solvent front.
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‘ 5.1 GC Derivatization

= Silylation
= Acylation

= Alkylation
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Silylation and perfluoroacylation
employed In GC-MS

BSTFA - Mechanism (1,2)

‘GIHS " CH 3) (CH 53_ G|I_|3 For BSTFA:
Sample —O: + CHy —Si—X —> [Sample — O—Si—X] —> Sample—O—S8i—CH3z * HX X= CF3—C = N —SIi(CHa)s
IL CHjy H CHgz CHs o]
R e
TMS: R—CH—OH —— R—CH—O0 S-,l\
R R’
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Figure 5. Electron ionization mass spectra of (a) the trimethylsilyl (TMS) ether and (b) the t-butyldimethylsilyl (TBDMS) ether
derivatives of cholesterol.
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‘ Acylation

= Acylation, an alternative to silylation, is the
conversion of compounds with active hydrogen

such as —OH, -SH, and —NH into esters, thioesters
and amides.
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Common Reactive Functional Groups

= Alcohols, phenols, carbohydrates and

amines.
TFAA + PFPA + HFBA - Mechanism (1,2)
3R, P

F,C~ 0~ “CF, R”“‘OJ\CFE ¥ FSC)J\OH
O 0 )OI\ 0

R T e el Rl R0 OC,Fs T CoFs” OH
0 0 0 0

CoF; OJ\CSF? R”"“OJ\ch? * CSF?)LOH
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Esterification Reaction

i acid (HCI) j"\
+ P
P Non CH,OH R ~ocH, * HeO

Transesterification adapted from (3).

j‘\ acid (HCI) JGL
o+ CH:OF " R~ “och, * R—OH

R

Hydrogen chloride is the favored catalyst because of
Its acid strength and because it Is readily removed.
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‘Indirect alkylation via chloroformates

COOH n- Pr:::pan:::l
(O L o= o
" ma N \fﬂ

Fig. 1 Reaction scheme for the derivatization of phenylalanine with
propyl chloroformate
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5.2 Analyte Derivatization in HPLC and
LC/MS Analyses (&)

= Derivatization is often required to alter
retention characteristics, increase response to
various detection techniques and/or provide
selective response for analytes in complex
matrices.
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